Строение двигателя

Содержание

Строение двигателя

Строение двигателя

Машина едет за счёт вращения колёс, имеющих сцепление с дорогой. Колёса вращаются за счёт трансмиссии, передающей на них крутящий момент от двигателя. А вот этот самый крутящий момент является продуктом преобразования энергии сжигания топлива в механическую работу, для чего собственно и предназначен двигатель внутреннего сгорания (ДВС).

В славное семейство ДВС входят роторные, газотурбинные и поршневые двигатели. Именно последние находятся под капотом львиной доли автомобилей для частной и коммерческой эксплуатации. О них и поговорим и рассмотрим схемы в разрезе далее.

Устройство двигателя

Итак, поршневой ДВС является сердцем большинства современных легковушек и включает в себя обязательный джентльменский набор из корпуса, двух механизмов и семи систем. Посмотрите одну из схем устройства двигателя в разрезе:

Корпус связывает в единое целое головку блока цилиндров, в которой находятся основные элементы газораспределительного механизма (ГРМ). Функция ГРМ — обеспечивать своевременную подачу топливо-воздушной смеси (воздуха) и отвод отработанных газов. ГРМ приводится в действие посредством цепи или ремня от зубчатого венца маховика коленвала, являющегося частью кривошипно-шатунного механизма, преобразующего возвратно-поступательные движения поршней в тот самый крутящий момент, который снимается с коленчатого вала и через трансмиссию передается колёсам.

Системы Двигателя (ДВС) на схеме в разрезе

  • Впускная. Горючее не сможет воспламениться без доступа кислорода, и именно впускная система обеспечивает забор, фильтрацию и подачу в нужном объёме воздуха в двигатель.
  • Топливная обеспечивает питание мотора. Для современных двигателей в качестве горючего используются бензин, ДТ, биотопливо, водород, как перспективное топливо, сводящее к минимуму отрицательное воздействие на окружающую среду.
  • Зажигание обеспечивает воспламенение рабочей смеси. В дизельных двигателях происходит её самовоспламенение.
  • Смазка для циркуляции моторного масла, снижающего трение между движущимися частями, создающего защитные плёнки на рабочих поверхностях и нивелирующего негативные эффекты от металлической микро стружки, продуктов сгорания и других вредных факторов работы мотора.
  • Охлаждение. Наиболее распространённым является охлаждение ДВС путём принудительной циркуляции антифризов, на худой конец — воды. Есть примеры и воздушного охлаждения мотора, такие как канувший в лету “Запорожец” и широко известный в узких кругах “Porsche 911”.
  • Выпускная система отводит от двигателя продукты сгорания, их частичную нейтрализацию и выброс в атмосферу.
  • Управление двигателем — это совокупность датчиков и электронных элементов управления остальными системами, завязанная в современных машинах на бортовой компьютер.

Как выглядит схема ДВС в разрезе:

Как работает двигатель внутреннего сгорания (ДВС)

Воспламенения рабочей смеси, состоящей из топлива, воздуха и остатков отработанных газов, происходит в момент максимального верхнего положения поршня, чем достигается наивысшая степень сжатия смеси. Тепловое расширение сгорающих газов толкает поршень вниз, что приводит к вращению коленчатого вала. Двум оборотам коленчатого вала, в четырёхтактном двигателе, соответствуют четыре этапа работы поршня в цилиндре. Для лучшего понимания, рассмотрите еще одну схему ДВС в разрезе:

Как видите на схеме в разрезе показаны: впуск, сжатие, рабочий ход и выпуск. Подробнее об этом далее.

  • Впуск. Поршень идёт вниз. Топливно-воздушная смесь — это продукт совместной деятельности топливной и выпускной систем. В бензиновых двигателях с центральным и распределённым впрыском она образуется во впускном коллекторе. В бензиновых моторах с непосредственным впрыском и в дизелях, данная смесь образуется непосредственно в камере сгорания.
  • Сжатие. Ход вверх. При закрытых впускных клапанах происходит смешивание и сжатие смеси до максимальных значений. Апофеозом этого процесса является принудительное или самовоспламенение смеси, знаменующее начало третьего такта.
  • Рабочий ход. Поршень идёт вниз. Двигаясь к своей нижней точке, в паре с шатуном передают энергию расширения горящих газов коленвалу.
  • Выпуск. Поршень идёт вверх. Через открывающиеся выпускные клапаны ГРМ, отработанные газы отводятся в выпускную систему, где глушатся, охлаждаются и очищаются перед выбросом в окружающую среду.

Стабильная, равномерная работа мотора достигается тем, что цилиндры не совпадают по фазам. Пока один цилиндр совершает полезную работу, в других идут подготовительные циклы, поэтому КПД двигателей внутреннего сгорания не высок (около 40%). Для повышения КПД ДВС и снижения вредных выбросов моторы турбируют, совершенствуют электронное управление рабочим циклом, делая более полным и эффективным сгорание топлива.

Схема цилиндра ДВС в разрезе:

Несколько важных моментов, связанных с устройством ДВС

При всём совершенстве современной электроники, на неё не стоит полагаться на все сто. Знание устройства и принципа работы мотора поможет даже новичку вовремя заметить тревожные симптомы, а значит избежать неприятных последствий поломок и затрат на их ликвидацию. О важности именно ручного контроля уровня масла в картере мы уже неоднократно писали в материалах.

На что ещё нужно обращать внимание?

Не так уж редки случаи растяжения цепи или разрыва приводного ремня ГРМ, особенно у авто с вторичного рынка. Последствия разрыва ремня ГРМ особенно печальны и дороги в устранении. Стоит следить за физическим состоянием ремня, и при появлении бахромы и других визуально определяемых следов его износа, менять на новый без всяких колебаний. Ослабление ремня или цепи привода ГРМ, проявляется в виде свистящих и гремящих звуков, а также определяется тактильно. Неполадки в головке блока цилиндров могут проявлять себя “пением сверчков” кулачкового привода клапанов. Полезно также следить за напором и характером выхлопных газов. Слегка прерывистый напор, с ритмичным чередованием усилений и ослаблений выхлопа, свидетельствует о нормальном рабочем цикле двигателя. Ослабленный и равномерный выхлоп, или “выстрелы” из выхлопной трубы, а также наличие в газах сажи, струйки топлива, и особенно — тосола, является показанием для вызова эвакуатора и скорейшего визита на СТО. Есть ряд ситуаций, когда допустима буксировка автомобиля или можно дотянуть до мастера своим ходом, но новичку не всегда просто определиться с предварительным диагнозом, поэтому лучше не рисковать. Деньги, уплаченные за эвакуацию — ничто, по сравнению с затратами на капитальный ремонт двигателя, или лечение “клина” в автоматических коробках передач.

Итак, мы рассказали и показали разные схемы двигателя в разрезе, надеемся, что информация была вам полезна. Здоровья вам и вашему автомобилю. Удачи на дорогах.

как работает двигатель автомобиля для чайника

city 731296 1920

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.

engine 1

В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Читать статью  Принцип работы и устройство двигателя

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Двигатель внутреннего сгорания (устройство и принцип работы).

9eae262s 100

Продолжаем познавательную страничку.

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы ДВС:

• Поршневой двигатель внутреннего сгорания;
• Роторно-поршневой двигатель внутреннего сгорания;
• Газотурбинный двигатель внутреннего сгорания.

Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:

Автономность;
• Универсальность
(сочетание с различными потребителями);
• Невысокая стоимость;
• Компактность;
• Малая масса;
• Возможность быстрого запуска;
• Многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:

• Высокий уровень шума;
• Большая частота вращения коленчатого вала;
• Токсичность отработавших газов;
• Невысокий ресурс;
• Низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:

Бензиновые двигатели;
• Дизельные двигатели.

Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:

• Корпус;
• Кривошипно-шатунный механизм;
• Газораспределительный механизм;
• Впускная система;
• Топливная система;
• Система зажигания
(бензиновые двигатели);
• Система смазки;
• Система охлаждения;
• Выпускная система;
• Система управления.

Читать статью  Замена двигателя – порядок оформления в ГИБДД и всё о сверке номеров мотора

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Принцип работы двигателя внутреннего сгорания основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):

660ca5cs 960

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

Вот так вот, Друзья! Благодарю за внимание!

Автоликбез или устройство автомобиля для чайников (5 фото)

Общая схема функционирования двигателя внутреннего сгорания

Начнем с двигателя.

Принцип работы реального ДВС

Коробка переключения передач

О каждой по порядку.

Сцепление механической КПП

Рассматривать, как работает механическая коробка передач необходимо с принципа работы сцепления. Сцепление нужно для того, что бы прерывать подачу крутящего момента от двигателя к колесам при переключении передач и при трогании с места. Подробнее смотрите на видео.

Механическая КПП

Ну а в этом видео на мой взгляд подробно разжевано, как работает сама КПП и синхронизаторы. Видео старое, но принципы работы МКПП остались прежними.
Идем дальше.

Гидротрансформатор автоматической КПП.

Гидромеханическая АКПП

Идем дальше.
Ок, крутящий момент от двигателя передали на КПП. Что дальше?
А дальше самая веселуха. Гидромеханическая АКПП в корне отличается по конструкции от механической МКПП. В ней отсутствуют привычные парные зубчатые зацепления. Вместо них применяется набор планетарных редукторов.
Их работа, а так же работа гидротрансформатора наглядно представлены на видео.
Видео, правда старое, 80-х годов, но с тех пор изменился лишь принцип управления элементами АКПП. Раньше он был исключительно гидравлическим, теперь же он полностью электронный: информация с датчиков скорости, положения педали газа и других анализируется в электронном блоке управления и он принимает решения о том, какую передачу выбрать. Количество передач в АКПП зависит от количества планетарных рядов и связей между ними. Раньше, когда не было жестких экологических требований и бензин был дешевым, двигатели делали мощными и не требовалось большого числа передач в АКПП, т.к. двигателю хватало сил вытягивать в широком диапазоне частот вращения коленвала.
Первые АКПП в 50-х годах в Америке были всего с 2-мя передачами. Кстати, наш любимый ЛИАЗ 677 имел АКПП с 2-мя передачами. Потом, в 70-х их стало 3, но тогда двигатели были 6-8ми литровые и проблем не было. В 80-х с подорожанием нефти появились малолитражки с 4-я передачами.
Современные автомобили имеют в АКПП 6-8 передач и больше.

Вариаторные АКПП (CVT)

Роботизированные коробки передач

Дифференциал

Давайте теперь разберемся, как же крутящий момент передается от коробки передач к колесам? Вал-то один, а колес 2 или 4 в зависимости от привода.
Для этого служит такая штука, как дифференциал.
Дифференциал служит для распределения подводимого к нему крутящего момента между выходными валами и обеспечивает возможность их вращения с неодинаковыми угловыми скоростями.
По месту расположения дифференциалы подразделяют на:
— межколесные (распределяющие вращающий момент между ведущими колесами одной оси)
— межосевые (распределяющие момент между главными передачами двух ведущих мостов)
— центральные (распределяющие момент между группой ведущих мостов)
По конструкции и принципу действия их условно можно разделить на:
1. Свободные
2. С блокировкой. а их в свою очередь можно разбить на:
а. С жесткой блокировкой
б. С дисковой блокировкой
в. С блокировкой вискомуфтой
г. С винтовой блокировкой
д. Активные дифференциалы

Свободный дифференциал

Принцип действия простейшего свободного дифференциала разобран на видео. Комментарии излишни

Из чего состоит автомобиль. Просто и понятно.

Нашёл интересный канал. Автор понятным языком рассказывает об устройстве автомобиля.

1. Общее устройство легкового автомобиля. Автомобиль состоит из несущей системы и кузова, двигателя, трансмиссии, ходовой части и системы управления. Кратко рассказывается о каждой составляющей.

2. Принцип работы четырёхтактного двигателя. Рассматривается камера внутреннего сгорания, 4 такта двигателя.

3. Как устроен двигатель в автомобиле. Показываются основые части двигателя (ремни, шкифы, гидроусилитель, генератор и т. д.).

4. Трансмиссия автомобиля.

5. Устройство подвески автомобиля. Рассказывается о видах подвески и о её частях (опоры колёс, направляющие, пружины, амортизаторы, стабилизатор устойчивости и подрамник).

Для тех, кто хочет посложнее:

6. Устройство сцепления.

7. Виды датчиков в двигателе внутреннего сгорания (ДВС)

Дубликаты не найдены

Нарисовано достаточно подробно и более-менее адекватно. Но дефекты речи скрадывают общее впечатление от просмотра

Там еще других ошибок навалом.

Детонация двигателя (должно быть детонация смеси в цилиндре/двигателе)

Католизато (так и видится некто облизывающий кран КАТО).

Но в целом видео познавательные.

Да, именно такая мысль у меня мелькала каждый раз, когда я это слышал.

Это для атмосферы, чтоб почувствовать себя в автосервисе

Ну вот..теперь автослесарем могу

Самое главное: при движении вперёд крутишь руль влево, машина поворачивает налево, крутишь руль вправо, машина поворачивает направо.

Окей, как устроен автомобиль понятно, можно теперь гайд как устроен автомобиль производства автоваз?

161554960021976087

В чем плюс рядных моторов?

1632503602194640208

Когда-то, рядная шестерка была самой ходовой, доминирующей конструкцией двигателя в Западном полушарии. Jaguar ставил их на свои лучшие модели, Jeep «построил» и закрепил на них свою репутацию во второй половине 20-го века. Тоже самое можно сказать о Mercedes-Benz. Рядные шестицилиндровые бензиновые моторы были хорошими образчиками.

Читать статью  Как работает двигатель автомобиля? О причинах поломок и перебоев в работе машины

Все мы привыкли думать, что в Штатах господствовали восьмицилиндровые моторы, это нельзя назвать полной правдой, ведь в недалеком прошлом почти каждый заурядный семейный автомобиль и многие пикапы оснащались единственным стандартом мотора – «рядным шестицилиндровым».

Затем настали тяжелые времена, началась экспансия V6.

В течение многих лет V-образные шестерки вытесняли рядные моторы, казалось, еще немного и вся конструкция будет предана забвению. Но, похоже этому не бывать – Mercedes-Benz совершил воскрешение. Он вернул рядную шестерку в виде новой версии двигателя под внутренним номером M256. Предназначение вновь изобретенного «колеса» очевидна – замена и вытеснение большей части силовых агрегатов V6 из линейки. Об этом еще несколько лет назад заявляли сами представители Mercedes-Benz.

Но единственный вопрос: «Зачем им это?»

Одними из главных недостатков современных автомобильных двигателей являются: сложность производства, усложненность конструкции, невысокая надежность и дороговизна. Все эти недостатки в полной мере присущи «V»-образному стандарту и в том числе производимому компанией из Штутгарта.

В конце концов, понимание того, что нужно каким-то образом бороться за повышение доступности автомобилей с объемными и мощными двигателями, натолкнули управление Daimler AG к рискованному на первый взгляд шагу – разработке современного рядного шестицилиндрового мотора. Именно низкие затраты на разработку двигателя, а не присущая линейному мотору плавность работы, дали старому дизайну отсрочку от окончательного уничтожения.

163250367719332129

Куда пропали все рядные моторы?

«Рядный» означает расположение цилиндров в блоке двигателя – они, соответственно, расположены один за другим – в ряд, а «шесть» – как несложно догадаться – это их количество.

Изначально Mercedes освоил производство своей рядной шестицилиндровой линейки моторов в 1924 и продолжал делать их вплоть до 1943 года, пока война не начала активно высасывать все соки из стран «оси», и как-то стало не до производства двигателей.

После восьмилетнего перерыва, с 1951 по 1998 год Mercedes продолжил делать разнотипные рядные моторы. Отличительной чертой было то, что в этот период в производстве всегда оставалась хотя бы одна рядная шестицилиндровая модель двигателя. Двадцать лет назад данная традиция окончательно ушла в прошлое. Примечательно, что в Германии подобный тип мотора продержался дольше, чем в других странах Запада, в которых имелась собственная автопромышленность.

1632503724123617048

Другие автопроизводители разбрелись по разным сторонам от шести цилиндров. В Европе и Японии пошли путем уменьшения их количества, постепенно снизив до четырех, со временем добавив мощности при помощи турбин.

В США, мощные V8 взяли верх над практичными и относительно экономичными «шестерками». С 1950-х по 1970-е годы в Штатах автомобили были монументально огромными, бензин стоил дешево, а значит никаких препятствий для V-образных моторов не было, также как не было места рядным конкурентам.

Со временем под рядные силовые агрегаты в США была отвоевана ниша – автомобили начального уровня, но и они просуществовали не так долго, поскольку их повторно вытеснили «V»-образные моторы.

Почему это произошло? Все дело в том, что автомобили стали компактнее, их капоты тоже стали меньше, а вот зоны деформации и количество электроники, напротив, в современных автомобилях оказалось больше. Все это занимает место, значит нужны более компактные моторы – V6 подходили для этого как нельзя лучше, ведь они были короче на один цилиндр по отношению к своим рядным «сотоварищам», но стоили при этом дешевле своих старших братьев – V8.

163250374616051615

Почему Мерседес вновь начал возрождать рядный тип моторов? И в чем его уникальность?

Короткие капоты по-прежнему являются проблемой, но у Mercedes есть несколько технических трюков, которые позволили сократить двигатель «M256» достаточно для того, чтобы «запихнуть» его в сегодняшние «курносые» автомобили.

На обычном двигателе, как известно, мощность мотора приводит в движение все навесное оборудование: гидроусилитель руля, генератор, помпу и компрессор системы кондиционирования. Все это добро приводится в действие через систему ремней и шкивов, расположенных в передней части двигателя. Все это нагромождение занимает много ценного места в пространстве между двигателем и радиаторной решеткой.

M256-й двигатель ушел от стандартной системы. Вместо нее все вспомогательное оборудование приводится в действие электрической 48-вольтовой системой, получившей фирменное наименование «Integrated Starter-Alternator (ISG)», в которой роль стартера и генератора объединена в едином блоке.

Такой подход сделал мотор компактней, но помимо этого, технология ISG также позволила повысить производительность относительно небольшого по объему двигателя и не последнюю роль в этом сыграла технология «интеллектуального турбонаддува» со встроенным электрическим турбокомпрессором и электромотором, который работает в паре с основной обычной турбиной, что устанавливается на CLS53.

1632503775180766410

Элемент технологии ISG (электромотор, расположившийся между коленчатым валом и КПП)

В зависимости от ситуации и требований, компрессор может помочь раскрутиться турбине или отдать первичный импульс для старта мотора. Интеллектуальная комбинация позволяет нивелировать турбо-яму, которую вы обычно чувствуете между нажатием педали газа и моментом увеличения мощности. То есть когда это необходимо электромотор работает, в качестве стартера и помогает двигателю достигать максимального крутящего момента в самом начале разгона, что обеспечивает автомобилю максимальную тягу на низких оборотах.

Так, что с технической точки зрения – это по-настоящему удивительный агрегат. Однако его уникальность заключается не только в используемых технологиях. Это уникальная конструкция с уходящими в глубокое прошлое корнями. Когда компактные V6 на протяжении 20 лет вытесняли рядные моторы, Mercedes, несмотря на прекращение производства последнего одновременно с уходом на покой лимузина W140 S-Class в 1998 году, не расстался с пониманием исторической связи, и не побоимся сказать – исторической ответственности в сохранении более простой и надежной версии силовых агрегатов.

Единственным конкурентом, который не расстался с рядной концепцией, стала компания BMW. Все остальные производители из Топ-10 либо давно прекратили попытки строительства среднеобъемных рядных двигателей, либо начав их делать достаточно быстро, прекращали. Среди них можно отметить:

Jeep, со своим 4.0-литровым I6, который перешел от него после 2006 года в пользу V6.

General Motors, который создал уникальный для своего времени рядный шестицилиндровый мотор в 2002 году в рамках нового семейства двигателей Atlas. Двигатель просуществовал до 2012 года.

Цены на СТО

Дело было так:
Есть в семье автомобиль французской марки (ожидается прилив троллей в комментариях про 3Ф, французов и т.д.) 2000-х годов. Сзади стоит независимая-многорычажная подвеска. Месяц назад появился стук и очень сильный, звук был похож на удары молотком по днищу со стороны глушителя. Любые самостоятельные проверки на яме не дали результата. Выхлопная не стучала, на вид все было цело. Жена взяла машину съездить по делам и заодно заехать на сто на диагностику. К слову выбирали СТО по отзывам, 400+ положительных отзывов. Сижу работаю, звонок, слезы и фраза «Тут машина сильно поломалась». Зная всю историю авто и что менялось, не понял что могло там так сильно поломаться. Говорю жене: «Заплати только за диагностику, ничего не подписывай и забирай машину». Вечер прихожу домой и начинаю спрашивать, что там такое случилось!? В ответ сует мне листок бумажки с картинкой подвески, обведенные детали под замену и суммы запчастей и ремонт. Так вот, приговорили горе-мастера 4 сайлентблока рычагов, 4 сайлентблока бананов, 2 амортизатора, диагностика и замена пружин. А теперь пробежимся по ценам. Буду писать первую цену СТО и через / ту, что в магазине.
4 сайлентблока рычагов 45$/20$
4 сайлентблока бананов 40$/10$
2 амортизатора 130$/40$
пружины 75$/45$
+ работа за все 200$

Обычно все делаю сам в гараже и оооочень редко обращаюсь на СТО, подумал что это может норма? Но все же чуйка взяла вверх и уже сам решил съездить на другое СТО, кстати к какому-то дяде Васе в гараж около дома, что бы уже самому с ним разобраться и на удивление он нашел всего лишь разбитую втулку стабилизатора, подложил кусок шланга под скобу и стук пропал. Цена вопроса: щедрые чаевые дяде Васе, а жене урок, что не стоит спешить. Пост не ради хайпа или ещё чего, просто не понятно откуда такая наценка, ладно за работу, но запчасти, вам же вообще магазины по оптовой продают.. Всем удачи и не стоит спешить в некоторых вещах!

Источник https://kuzov-media.ru/articles/nachinayushchemu-masteru-na-zametku/stroenie-dvigatelya/

Источник https://wheelnews.ru/kak-rabotaet-dvigatel-avtomobilya-dlya-chaynika/

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *